
A Signify Developer’s guide to debugging 
your own (or someone else’s) code



Before we start

“If debugging is the process of removing 

software bugs, then programming must be 

the process of putting them in.”

- Edsger Dijkstra



Overview

• Always assume there is a bug in your code.

• Start with what you know. And work from there.

• Don’t panic, be solution-oriented.

• Do you have enough information?

• Can you replicate the bug?

• VERY IMPORTANT: Replicate the bug first before starting to change code.

• DURING DEVELOPMENT: Thank QA for finding bugs in your code.



Where do I start?

• Server-side error: start with the stack trace. (…/SignifyErrorlog.axd).

• Database error (could be spotted in the stack trace): identify SQL code 

causing issue (SQL Profiler).

• Display (look and feel) error: analyse styles used on page (Chrome DevTools).

• Client-side script error: analyse scripts used on page (Chrome DevTools).

• API calls: (Filddler, Chrome DevTools).

• Errors when loading a Partial View: (Chrome DevTools).



Server-side error

• Look for the last time in the stack trace that it touched the system’s code.

• Identify inputs used by Client/QA, if required for debugging.

• Replicate the issue consistently on local. IMPORTANT: make sure your setup 

on local is the same as the client’s.

• Start to change the code using the same inputs as QA/Client to verify the 

solution



Database error

• Use SQL Profiler to identify query/stored procedure causing error.

• Run query in SQL Server Management Studio with parameters.

• TIP: Use PRINT statements if

1. Procedure is complex and has many points of failure

2. Dynamic SQL is used.

• TIP: Duplicates?

1. Remove joins.

2. Add joins one at a time to determine which one causes duplicates.

• TIP: Poor performance?

1. Check that With(nolock) table hint in used in selects.

2. Do not use in-line user defined functions when selecting 1000+ records

3. Reports – filter results as early as possible, use temp tables wisely.

4. Query Execution Plan



Display (look and 
feel) error

• Use DevTools in Chrome (Inspect/Ctrl+Shift+I).

• Find origin of styling.

• Change HTML markup.

• Preview changes.



Client-side script 
error

• Analyse scripts used on page (Chrome DevTools). 

https://developers.google.com/web/tools/chrome-devtools/javascript/

1. Find HTML markup for selected control in Elements

2. Place breakpoint in Sources

3. Run query in Console

• When debugging javascript on a partial view, add “debugger” to script in 

Sources – javascript is added dynamically when partial is loaded.

• SOAPUI for SOAP and REST testing.

• Fiddler http://www.telerik.com/fiddler

1. Debug API calls by building request to simulate a post / get.

https://developers.google.com/web/tools/chrome-devtools/javascript/
http://www.telerik.com/fiddler


Errors when loading 
a Partial View

• Errors on Partials are consumed.

• Use the Network tab to see the actual error.

• Follow Server Side error steps from this point onwards.



What if I can’t replicate 
the error on local?

• Get the client’s database (ask the client’s permission first) .

• IMPORTANT: if the client’s database is visible from the Signify network or 

while logged onto their VPN, your connection string can point directly to the 

database without bring the database to Signify. BUT, take great care not to 

influence the client’s system while this is done.

• Restore the database on THESEUS\SQL2019.

• Reset your repository to the client’s version (available on Master Builder).

• Add breakpoints in your code where the error is experienced (according to 

the stack trace).

• Follow the steps to replicate (supplied by QA).



What if I can’t replicate 
the bug on the client?

• Check UserLog table to identify browser used by user when error occurred. 

Some bugs are browser or browser-version specific.

• As a last resort, ask permission from the client to contact the user directly. 

Hold a Teamviewer session with the user and let them talk you through the 

steps they follow to replicate the issue.



Quotes

• “When debugging, novices insert corrective code. Experts remove 

defective code.” – Richard Pattis

• “Sometimes it pays to stay in bed on Monday, rather than spending 

the rest of the week debugging Monday’s code.” – Dan Salomon

• “Only half of programming is coding. The other 90% is debugging.” –

Unknown

• “Weeks of coding can save hours of planning.” - Unknown



The End


