
CSS/HTML
Table of contents
General
Naming conventions
Can I Use
Bundling
SASS

Table of contents
General
Naming conventions
Properties
Can I Use
Bundling
SASS

https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/general-b2e
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/naming-conventions-1c9
https://signature.signifyhr.co.za/link/678#bkmrk-page-title
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/can-i-use
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/bundling-ec5
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/sass

General
Try to follow the AirBnB CSS/SASS guideline as far as possible.

Please have a look at the rest of this chapter to see more details about Naming Conventions and
BEM (very important!)

https://github.com/airbnb/css

Naming conventions
BEM, or “Block-Element-Modifier”, is a naming convention for classes in HTML and CSS.

We will be using BEM for the following reasons:

It helps create clear, strict relationships between CSS and HTML
It helps us create reusable, composable components
It allows for less nesting and lower specificity
It helps in building scalable stylesheets

Example:
HTML

CSS

In this CSS methodology a block is a top-level abstraction of a new component, for
example a button: .btn { } . This block should be thought of as a parent.
Child items, or elements, can be placed inside and these are denoted by two underscores
following the name of the block like .btn__price { } .
Finally, modifiers can manipulate the block so that we can theme or style that particular
component without inflicting changes on a completely unrelated module. This is done by
appending two hyphens to the name of the block just like btn--orange .

 R199.99
 Subscribe

/* Block component */
.btn {}

/* Element that depends upon the block */
.btn__price {}

/* Modifier that changes the style of the block */
.btn--orange {}
.btn--big {}

If another developer wrote this markup, and we weren’t familiar with the CSS, we should still
have a good idea of which classes are responsible for what and how they depend on one
another. Developers can then build their own components and modify the existing block to
their heart’s content. Without writing much CSS, developers are potentially capable of
creating many different combinations of buttons simply by changing a class in the markup:

https://signature.signifyhr.co.za/uploads/images/gallery/2020-10/C1w60OdXvXEWrAwy-BEM.PNG

Can I Use
To make sure the supported browsers can render the CSS properties that you want to use, refer to
the Can I Use Site.

Can I Use provides browser support tables for modern web technologies.

For example, when searching CSS Grid, you will see all the browsers (and their versions) that can
support the properties:

TO DO : show list of browsers supported by Signify

https://caniuse.com/
https://signature.signifyhr.co.za/uploads/images/gallery/2020-10/ijXJ1oxGXK3rRLyB-CanIUse.PNG

Bundling
Always use bundling to some degree in production. Commonly used CSS files (for an Area or
Module) should always be bundled.

TODO : Give more info and examples on CSS bundling

SASS
Sass is a stylesheet language that’s compiled to CSS. It allows you to use variables, nested rules,
mixins, functions, and more, all with a fully CSS-compatible syntax. Sass helps keep large
stylesheets well-organized and makes it easy to share design within and across projects.

Click here to view the documentation for SASS

Naming Conventions
Style rules are the foundation of Sass, just like they are for CSS. And they work the same way: you
choose which elements to style with a selector, and declare properties that affect how those
elements look.

Nested selectors
Do not nest selectors more than three levels deep!

When selectors become this long, you're likely writing CSS that is:

Strongly coupled to the HTML (fragile) —OR—
Overly specific (powerful) —OR—
Not reusable

Again: never nest ID selectors!

If you must use an ID selector in the first place (and you should really try not to), they should never
be nested. If you find yourself doing this, you need to revisit your markup, or figure out why such
strong specificity is needed. If you are writing well formed HTML and CSS, you should never need
to do this.

.page-container {
 .content {
 .profile {
 // STOP!
 }
 }
}

Please refer to SASS Style Rules for more details

https://sass-lang.com/documentation/variables
https://sass-lang.com/documentation/style-rules#nesting
https://sass-lang.com/documentation/at-rules/mixin
https://sass-lang.com/documentation/modules
https://sass-lang.com/documentation
https://sass-lang.com/documentation/style-rules/declarations
https://sass-lang.com/documentation/style-rules#nesting

Variables
Sass variables are simple: you assign a value to a name that begins with $, and then you can refer
to that name instead of the value itself. But despite their simplicity, they're one of the most useful
tools Sass brings to the table. Variables make it possible to reduce repetition, do complex math,
configure libraries, and much more.

Prefer dash-cased variable names (e.g. $my-variable) over camelCased or snake_cased variable
names. It is acceptable to prefix variable names that are intended to be used only within the same
file with an underscore (e.g. $_my-variable).

Mixins
Mixins allow you to define styles that can be re-used throughout your stylesheet. They make it easy
to avoid using non-semantic classes like .float-left , and to distribute collections of styles in libraries.

Mixins should be used to DRY up your code, add clarity, or abstract complexity--in much the same
way as well-named functions. Mixins that accept no arguments can be useful for this, but note that
if you are not compressing your payload (e.g. gzip), this may contribute to unnecessary code
duplication in the resulting styles.

Functions
Sass provides many built-in modules which contain useful functions (and the occasional mixin).
These modules can be loaded with the @use rule like any user-defined stylesheet, and their
functions can be called like any other module member. All built-in module URLs begin with sass: to
indicate that they're part of Sass itself.

Ordering of property declarations
1. Property declarations

List all standard property declarations, anything that isn't an @include or a nested selector.

Please refer to the Variables for examples and details

Please refer to the @mixin and @include for examples and details

Please refer to the Functions documentation for examples and details

https://sass-lang.com/documentation/at-rules/use
https://sass-lang.com/documentation/at-rules/use#loading-members
https://sass-lang.com/documentation/variables
https://sass-lang.com/documentation/at-rules/mixin
https://sass-lang.com/documentation/modules

2. @include declarations

Grouping @include s at the end makes it easier to read the entire selector.

3. Nested selectors

Nested selectors, if necessary, go last, and nothing goes after them. Add whitespace between your
rule declarations and nested selectors, as well as between adjacent nested selectors. Apply the
same guidelines as above to your nested selectors.

.btn-green {
 background: green;
 font-weight: bold;
 // ...
}

.btn-green {
 background: green;
 font-weight: bold;
 @include transition(background 0.5s ease);
 // ...
}

.btn {
 background: green;
 font-weight: bold;
 @include transition(background 0.5s ease);

 .icon {
 margin-right: 10px;
 }
}

