
SQL
Table of contents
General
Naming conventions
Cursors
Common table expressions (CTE's)
Temporary tables
Table variables
Tables and indexes
User defined functions
Stored procedures
Triggers
Existence checks
Views

Table of contents
General
Naming conventions
Cursors
Common table expressions (CTE's)
Temporary tables
Table variables
Tables and indexes
User defined functions
Stored procedures
Triggers
Existence checks

https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/general-e36
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/naming-conventions-d1f
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/cursors
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/common-table-expressions-%28ctes%29
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/temporary-tables
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/table-variables
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/tables-and-indexes
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/user-defined-functions
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/stored-procedures
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/triggers
https://signature.signifyhr.co.za/books/the-standards-%28work-in-progress%29/page/existence-checks

General
No more than 200 lines (formatted) allowed in any stored procedure, user-defined
function or view. If more than 200 lines is unavoidable, please discuss this with a Senior
Developer or Database Administrator first.
Aliases should be used for tables in SELECTs for readability purposes and alias names
should make sense. If alias is too long (>10 characters) , use an abbreviation that makes
sense.
EditedUser in a SQL batch job is the name of the stored procedure where it is called
from. When the edited user is provide to the procedure the SP name must be appended
to e.g. {Username}_MyProc. This must be applied to any parent procedure that perform
data modification.
Script name assigned correctly http://shakespeare/MasterBuilder/Tools/GenerateScript
when committing your scripts.
Stored Procedure, Views and Functions heading convention followed (see example below)

UPDATE statements should always contain a WHERE clause.
WITH(NOLOCK) should be used in SELECTs to prevent unnecessary locking.
SQL KEYWORDS should always be in CAPS.
Dynamic SQL should only be used when absolutely necessary.
The SchemaId column in tables must not be nullable.
The statement SET NOCOUNT ON should be at the top of the stored procedure unless in
the unlikely case where the counts obtained from the stored procedure is used in code.
When performing an INSERT, always specify the column list

Correct : INSERT INTO tmp (Value) SELECT @variable INSERT INTO tmp (Value)
VALUES(@variable)

Not correct : INSERT INTO tmp SELECT @variable INSERT INTO tmp
VALUES(@variable)

When writing an automation stored procedure in SQL and the code becomes too complex
and long-winded, break the stored procedure into multiple stored procedures.
Using in-line user defined functions in SELECT statements should only be used if
absolutely necessary. NOTE : Complex user-defined functions used in-line in large SELECT
statements returning many rows (1000+) can potentially slow down your code
significantly. In-line user defined functions should be tested on large amounts of data.

2018/11/30 : dbotha : 56789 : Added check for qualifications offered by my learning
provider.
{Date} : {Author} : {TP#} Short concise description of change

http://shakespeare/MasterBuilder/Tools/GenerateScript

Naming conventions
General

Decide per module if abbreviation (e.g. prs for Personnel module) or full name (e.g. leave)
will be used for database Objects.
Do not use spaces in the names of database objects.
Avoid using ntext, text, and image data types in new development work. Use nvarchar
(max), varchar (max), and varbinary (max) instead.

Note: The parent / grouping determines the module the data is stored on E.g. EmployeePDPs (an
employee’s PDP’s) vs. pdpPeriod (a PDP’s periods)

Table 1 : Database Module Abbreviations

Abbreviation Module

cc Career Conversation

cfg Configuration

cl Catalogue

com Communication (Import / Export)

cpd Credits

dbd Dashboards

ab Assessment Builder

ee Employee Evaluation

el2 E-Learning v2

el e-Learning

els Learning Store

em Event Management / Training and Scheduling

fais FAIS

ate Ask The Expert/ Discussion Forum

icn Icodeon

ir Internal Relations / Disciplinary Actions

jl Job Leveling

jp Job Profiler

leave Leave Management - New

lic Licences

mc Mentors and Coaches

ntf Notifications

org Organisational Structure

pdm Performance Management

pdp Personal Development Plan

prc HR Processes

prs Personnel

pw Pathways

rb Report Builder

rec Recruitment

rem Remuneration

rp Resource Planning

rpt Reports / Report Management

sms SMS Notifications

sr Salary Review

ss Salary Scenario

sty System Framework

sys System Administration

tal Talent Management - New

sc Succession and Career Planning

tM Talent Management - Old

txAudit Auditing - Old

wf Work Flows

tr_ Trigger

Tables
A table name must always be prefixed with the module name abbreviation (see above).
A database table name must always be plural

prsEmployees – There will most likely be more than one employee in the system
LeaveGroupTypes – Each Leave Group can have one or more Leave Type
eeImports – Only one import can run at a time
pdpStatuses – There are multiple statuses for the module

A column name must be the shortest descriptive name possible
Do not specify module prefix e.g.

Correct column name EmployeeId

Incorrect column name prsEmployeeId

Exceptional case: If more than one column in the same table are the “same” e.g.
CategoryId, specify module prefix e.g. cpdCategoryId, pdpCategoryId

A column name must refer to a single and not multiple instances

Use UnitId instead of UnitsId
Rather use varchar(max) instead of text or varchar(8000) types for string columns
where applicable
Each table that has a single identity column must also have a clustered primary key with
the following naming convention:

PK_{TableName}_{IdentityColumn}
A foreign key constraint name must be in the following format:

FK_{TableName}_{Column1}

Views
A View’s name must follow the same convention as table names (add View at end of
name)

Use prsTerminatedEmployeesView instead of viewTerminatedEmployees
naming: {prefix}{Description of the data resturned}View

User-Defined Functions
A User-Defined function's name must follow the same convention as table names.
A user defined function must be prefixed with the module (do not add fnc prefix)

Use el2SelectScholarshipManagerNotificationDays instead of
fncSelectScholarshipManagerNotificationDays

General user defined functions (module-unspecific) can be the description of the output
Use Split instead of fncSplit
Use CleanHtmlTags instead of fncCleanHTMLTags

Stored Procedures
A stored procedure name must always be prefixed with the module.
A stored procedure must indicate it’s intention by using a keyword on what action will be
performed

Select
InsertUpdate
Insert
Update
Delete
Check/ Verify
Copy
Archive
Reset
Apply

Examples
prsSelectEmployeesAll
prsSelectEmployeesList - paging
prsSelectEmployee - single

prsInsertUpdateEmployee
prsDeleteEmployee
prsCheckEmployeeIDNumber
styResetUserPassword
pdmCopyContract

Temporary Tables
Single use temp table: #{Descriptive table name}
Global use temp table: ##{Descriptive table name}
Variable temp table @{Descriptive table name}

Common Table Expressions (CTE's)
CTE table names are declared with the prefix cte.

Indexes
A non-clustered index name must be in the following format:

IX_{TableName}_{Column1}_{Column2}
Indexes have a maximum size of 900 or 1700 depending on the index type and
SQL version. Do not create a non-clustered index on a column with a max length
of more than 500.

Always check with the Database Administrator whether indexes should be created during
development. Assume that indexes will always be created.

Constraints
A default constraint name must be in the following format:

DF_{TableName}_{Column1}

A unique constraint name must be in the following format:
UQ_{TableName}_{Column1}_{Column2}

A check constraint name must be in the following format:
CK_{TableName}_{Column1}_{Column2}

Columns with Default value constraint should not allow NULLs.

TODO: Add a link to main page for each section

Cursors
Use cursors only when absolutely necessary.
If the function performed by the cursor could have been achieved by another SQL function
e.g. PIVOT or Common Table Expression then rather do that as CURSORS are expensive.
When using a cursor to only cycle once through records without updating them, use the
following syntax to make the cursor as light as possible:

When evaluating the use of cursors first consider the use of for XML path to loop through
each item in a table

DECLARE @SchemaID INT

DECLARE curs CURSOR LOCAL FORWARD_ONLY STATIC READ_ONLY FOR
 SELECT
 SchemaID
 FROM cfgSchemaID WITH(NOLOCK)
 WHERE
 GETDATE() BETWEEN ValidFrom AND ValidTo
 AND SysID = 101

OPEN curs

FETCH NEXT FROM curs
INTO @SchemaID

WHILE @@FETCH_STATUS = 0
BEGIN

 /*Do your commands for @SchemaID here*/

/*Get the next author.*/
FETCH NEXT FROM curs
INTO @SchemaID
END

CLOSE curs
DEALLOCATE curs

https://signature.signifyhr.co.za/books/tools/page/sql-code-nuggets#bkmrk-sql-xml-path

Common table expressions
(CTE's)

CTE table names are declared with the prefix cte
Used to simplify complex joins and subqueries.
Use a Common Table Expression for paging instead of Dynamic SQL.
Always start with a semi-colon before the WITH.
Chaining CTE's must be limited to 3 instances.
CTE's must be filtered as soon as possible to limit the number of records stored in
memory.
CTEs can only be used when data is only required for a single use in the procedure.
CTEs must always be provided named column and not use the * selector.

The use of recursive CTEs
Always ensure a termination condition is defined.
For an example view this site
e.g.

;WITH cteEmployees
 AS (SELECT
 Name
 , Surname
 , EmployeeNumber
 FROM
 prsEmployees WITH(NOLOCK))
 SELECT
 *
 FROM
 cteEmployees

WITH Managers AS
(
--initialization
SELECT EmployeeID, LastName, ReportsTo
FROM Employees

https://www.mssqltips.com/sqlservertip/1520/recursive-queries-using-common-table-expressions-cte-in-sql-server/

WHERE ReportsTo IS NULL
UNION ALL
--recursive execution
SELECT e.employeeID,e.LastName, e.ReportsTo
FROM Employees e INNER JOIN Managers m
ON e.ReportsTo = m.employeeID
)
SELECT * FROM Managers

Temporary tables
Temp tables are used for the large temporary storage of data.
Only use local temp tables.
Use temporary tables cautiously / only when necessary e.g. early filtering in reports /
complex queries.
When a temporary table is used in a stored procedure, evaluate if it is absolutely
necessary.
Ensure that temporary table are always explicitly dropped at the end of the stored
procedure.
When the possibility exist that the temp table does not exist test its existence in the
temp..DB before dropping e.g. conditionally created temp table

Create the table before addition when a fixed definition is required or multiple data
sources are used to populate it

IF OBJECT_ID('tempdb..#TheTable') IS NOT NULL
BEGIN
/*Do Stuff*/
END

 CREATE TABLE #LeaveCycles(
 StartDate DATETIME,
 EndDate DATETIME,
 LeaveTypeId INT,
 Name VARCHAR(200) COLLATE DATABASE_DEFAULT,
 CycleId INT,
 CreatedDate DATETIME,
 EmployeeId INT
)

 INSERT INTO #LeaveCycles(
 StartDate
 , EndDate
 , LeaveTypeId
 , Name
 , CycleId
 , CreatedDate
 , EmployeeId

When a single table is used a select into can be done to create the temp table

)
 EXEC LeaveCalculateActiveCyclesByLeaveType
 @EmployeeId = @EmployeeId,
 @SchemaId = @SchemaId,
 @LeaveTypeId = @LeaveTypeId,
 @IsHistoric = @IsHistoric

Table variables
Use table variables over temp tables for a small quantity of data (thousands of bytes)

https://stackoverflow.com/questions/11857789/when-should-i-use-a-table-variable-vs-temporary-
table-in-sql-server

Example:

DECLARE @product_table TABLE (
 product_name VARCHAR(MAX) NOT NULL,
 brand_id INT NOT NULL,
 list_price DEC(11,2) NOT NULL
);

INSERT INTO @product_table
(
 product_name,
 brand_id,
 list_price
)
SELECT
 product_name,
 brand_id,
 list_price
FROM
 production.products
WHERE
 category_id = 1;

https://stackoverflow.com/questions/11857789/when-should-i-use-a-table-variable-vs-temporary-table-in-sql-server
https://stackoverflow.com/questions/11857789/when-should-i-use-a-table-variable-vs-temporary-table-in-sql-server

Tables and indexes
Always use a column list in INSERT statements of SQL queries. This will avoid a problem
when table structure changes.

Correct : INSERT INTO tmp (Value) SELECT @variable

Perform all referential integrity checks and data validations using constraints instead of
triggers, as they are faster.
Remember to add foreign-key constraints where a table references another.
Always check with the Database Administrator to confirm what indexes should be added
when a new table is added to the database.

INSERT INTO tmp (Value) VALUES(@variable)

Not correct : INSERT INTO tmp SELECT @variable

INSERT INTO tmp VALUES(@variable)

User defined functions
Do not call functions repeatedly in stored procedures, triggers, functions and batches,
instead call the function once and store the result in a variable, for later use.
Unless absolutely necessary, DO NOT USE in-line user-defined functions in SELECTs. If
unavoidable, discuss with a Senior Developer first before implementing it.
When used it must be if possible only use data provided and not do extra selects from
other tables.

Stored procedures
EXCEPT or NOT EXIST clause can be used in place of LEFT JOIN or NOT IN for better
performance (see example for EXCEPT below)

If stored procedure always returns single row resultset, then consider returning the
resultset using OUTPUT parameters instead of SELECT statement
Use query hints to prevent locking if possible (NoLock)
Avoid using dynamic SQL statements if you can write T-SQL code without using them.
The number of nested procedures must be limited to no more than 32

SELECT EmpNo, EmpName
FROM EmployeeRecord
WHERE Salery > 1000
EXCEPT
SELECT EmpNo, EmpName
FROM EmployeeRecord
WHERE Salery > 2000
ORDER BY EmpName;

Triggers
Limit the use of triggers only for auditing, custom tasks, and validations that cannot be
performed using constraints.
If possible only exec trigger conditionally e.g. modifying data

Existence checks
Make use of the existence checking defined here
Always check for existence when adding new objects to the database (see example
below)

Also check for existence when editing a database object (see example below)

IF NOT EXISTS
 (
 SELECT TOP 1
 1
 FROM
 sys.all_columns c
 JOIN sys.tables t
 ON t.object_id = c.object_id
 WHERE t.name = 'EmployeeLeave'
 AND c.name = 'ActionStatus')
 BEGIN
 ALTER TABLE EmployeeLeave
 ADD
 ActionStatus INT
END

IF EXISTS
 (
 SELECT TOP 1
 1
 FROM
 sys.all_columns c
 JOIN sys.tables t
 ON t.object_id = c.object_id
 WHERE t.name = 'EmployeeLeave'
 AND c.name = 'ActionStatus')
 BEGIN
 ALTER TABLE EmployeeLeave
 ALTER COLUMN ActionStatus NVARCHAR(2) NOT NULL

https://signature.signifyhr.co.za/books/tools/page/checking-for-existence#bkmrk-sql-object-existence

END

Views
Incorporate your frequently required, complicated joins and calculations into a view so
that you don’t have to repeat those joins/calculations in all your queries. Instead, just
select from the view.
In views always define selects with named columns.
Avoid the use of views within views.
If possible rather implement procedures to get filtered datasets.

