
General

Developers guide to debugging
(click on the image below)

When dealing with objects, always check that they exist and content/elements are
available

Format dates according to system standards (use SignifyTypeExtensions)
Enums are singular
Method names make sense

public IEnumerable<exSample> GetSamples(SignifyHRDAL dbContext)
{
 var samples = SampleHelper.GetSampleList();

 if (samples != null && samples.Count > 0)
 {
 //Do something
 }

 return samples;
}

https://signature.signifyhr.co.za/attachments/109
https://signature.signifyhr.co.za/attachments/109

Use the var keyword instead of long namespace.object.names if the type that is returned
is clear from the variable initialisation.

Removed the old author from the method. Tracking of who made the change can be done
in Git.
Use object initializer instead of empty constructor, when setting properties.

Ensure that null checks are performed and handled, where necessary.
Remember to remove unnecessary code.
Lambda expressions – variables should make sense. Abbreviations can be used as long as
it makes sense.
Is foreach used in preference to the for(int i...) construct?

Foreach

public void UpdateSample()
{
 //Bad
 bool isActive = false;
 //Good
 var isActive = false;

 //Bad
 string sampleDescription = "This is the new description";
 //Good
 var sampleDescription = "This is the new description";
}

public class Cat
{
 // Auto-implemented properties.
 public int Age { get; set; }
 public string Name { get; set; }

 public Cat()
 {
 }

 public Cat(string name)
 {
 this.Name = name;
 }
}

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in

For
Use Translation Resources instead of hard coded text, especially for enums and meta data
annotations. Also ensure that the translation resources are generated correctly using the
admin page. Find steps here.
Always prefix an interface with the letter I, for example ITransaction, IAuditable, etc.
When naming an interface, where possible use adjective phrases, for example IRunnable,
IAuditable, IPersistable, IDisposable, IComparable, IEnumerable, however, nouns can also
be used such as ITransaction, IHttpModule, etc are allowed when deemed necessary.
Use singular form in naming Enums, unless the enum represents bit-wise flags, where
plural names should rather be used.
When using generic type parameters in a generic type based classes or methods, use
descriptive names such as IDictionary<TKey, TValue>, and prefix all generic type
parameters with the letter T.
Only use the letter T as a generic type parameter if it self-explanatory and usually the
only generic type parameter, for example ICollection<T>, IEnumerable<T>, etc.
When extending from the following classes, add the base class name as a suffix:

System.EventArgs, e.g. System.RepeaterEventArgs
System.Exception, e.g. System.SQLException
System.Delegate

Revision #21
Created 17 September 2020 01:44:39 by Theuns Pretorius
Updated 5 October 2020 10:52:52

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/for
http://shakespeare/SigniWiki/wiki/202/adding-a-new-translation-resource

